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Pneumothorax

Pneumothorax, also known as a collapsed lung, i1s a
condition in which air builds up outside the lung but
within the pleural cavity, or space between the lung
and chest wall. This can cause pressure on the lung
and lead to collapse.

Pneumothorax can be caused by:
e Chest Trauma
e Excess Pressure
e Lung disease, such as Asthma, Chronic
Obstructive Pulmonary Disease (COPD), Cystic
Fibrosis, Tuberculosis, or Whooping Cough
e Cystic Lung Diseases

‘Subtle Pneumothorax Large Pneumothorax Chest Drain
Early Tension

Surgical

! Primary spontaneous pneumothorax mainly occurs
at 20-30 years of age. Treatements costing upwards of
$6,000 and 3 Lakh INR.

Drain/Surgical Emphysema | Latrogenic Pneumothorax




Pneumothorax : Radiography
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SOCIETY FOR IMAGING INFORMATICS IN MEDICINE (SIIM) - FEATURED PREDICTION COMPETITION - 5 YEARS AGO Late Submission sae t \ I : R

®
AMERICANM COLLEGE OF

RADIOLOGY

QuaLITY IS OuUurR IMAGE

SIIM-ACR Pneumothorax Segmentation

Identify Pneumothorax disease in chest x-rays

Problem Statement: Develop a segmentation model that indicates the location and extent of pneumothorax using
binary masks (encoded by RLE) for a set of chest radio-graphic images from the SIIM-ACR Pneumothorax
Segmentation Challenge on Kaggle.

Input (training): X-Ray Image, Ground Truth Mask
Output (training): Predicted Mask

Input (test): X-Ray Image
Output (test): Predicted Mask




Applications and Impact
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Pneumothorax may be a life-threatening emergency, and chest
radiographs remain the cornerstone of diagnosis. Even experienced
radiologists need to carefully adjust image display settings, such as
the window width, window level, and image contrast, to make the
correct diagnosis of the disease. This work requires a large amount
of clinical experience and patience.

Sometimes, fatigued doctors will make incorrect judgments. The
diagnostic accuracy of pneumothorax highly depends on the
expertise of the attending radiologist.

Automated methods of pneumothorax detection may allow earlier
diagnosis and treatment because the signs of pneumothorax on chest
radiographs can be subtle, and up to 20% of occult pneumothoraces
are missed at the time of presentation.




Literature Review : Competition Leaderboard

# L Team Members Score Entries Last Solution
| 1 - 205 [dsmlkz] Aimoldin Anuar @ @ 0.8679 15 Sy @
| 2 - 112 X5 D & (o @ @ 0.8665 3 5y D
| 3 ~16  bestfitting @ 0.8651 7 5y D
| 4 - 233 [ods.ai] amirassov é% O 0.8644 2 Sy @
| 5 ~125  earhian (5 @ 0.8643 5 5y D
Rank | Network Encoder Techniques Score
) U-Net ResNet (34, 50), SE-ResNext 50 Triplet Scheme Thresholding (Inference), Destructive Augmentation, o o
-Ne esNe -ResNex : . .. : i :
> High Resolution (512 - 1024) Uptraining, Gradient Accumulation
2 Deeplabv3+, U-Net | SE-ResNext (50, 101), EfficientNet (B3, B5) | Stochastic Weight Averaging (SWA), Motion-Blurring Augmentation 0.8665
Lung segmentation and CBAM Attention, External Dataset : NIH Chest X-
3 U-Net ResNet-34, SE-ResNext-50 0.8651
Ray, CheXpert. Montgomery County X-ray
4 U-Net ResNet-34 Frozen Batch-Normalization, Deep Supervision Model 0.8644
5 U-Net SE-ResNext (50, 101) ASPP and Semi-Supervision Model, 0.8643



https://stanfordmlgroup.github.io/competitions/chexpert/

Pneumothorax Recognition Neural Network Based on Feature Fusion of Frontal
and Lateral Chest X-Ray Image

IEEE Access
Feature Fusion Technique : Multi-input multi-output neural network that
Received April 28, 2022, accepted May 10, 2022, date of publication May 16, 2022, date of current version May 23, 2022. Ao e fuses information from frontal and lateral chest X—ray images.
Eplat OYyic Motigiie NN ACERSA 0TI TS0 Residual block and Channel Attention Mechanism : Residual block alleviates
Inferences .. . . . . .
. the vanishing gradient problem, while channel attention mechanism gives
. (Developed Solution) . : .
Pneumothorax Recognition Neural Network different weights to different feature maps.
Based on Feature Fusion of Frontal mage-level Annotation
Evaluation Metrics AUC, Accuracy, Recall, Precision, Macro avg, F1-Score, Weighted avg
JIA XIN LUO ', WU FENG LIU“2, AND LIANG YU !
! College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
25 chool of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
Corresponding author: Wu Feng Liu (Iwf@haut.edu.cn)
This work was supported by the National Natural Science Foundation of China for Young Scholar under Grant 11005136, Resnetso (frontal branCh) _0'956
Resnet50 (lateral branch) - 0.950
ABSTRACT Pneumothorax is a potentially life-threatening disease that requires urgent diagnosis and Resnet50 (fused branch) - 0.975
treatment. Clinically, a chest X-ray examination is the first choice for diagnosing pneumothorax. However,
it is difficult to diagnose pneumothorax by only frontal chest X-ray imaging when the lesion area is only P _ _
composed of a small amount of air. Therefore, we propose a pneumothorax diagnosis neural network based Performance Scores EffTC%entNet b4 (frontal branch) - 0.952
on feature fusion, where frontal and lateral X-ray information are fused. In this network, there are two inputs (AUC) EfficientNet-b4 (lateral branch) - 0.943
and three outputs. The two inputs are the frontal chest X-ray image and the lateral chest X-ray image. The . _ _
three outputs are the classification results of the frontal chest X-ray image, the classification results of the EfficientNet-b4 (fused braHCh) 0.961
lateral chest X-ray image, and the classification results integrating the characteristics of the fused frontal
chest X-ray image and lateral chest X-ray image. Our algorithm considers the vanishing gradient problem _ )
in the pneumothorax recognition model and introduces the residual block to alleviate this problem. Because DenseNet-121 (frontal branCh) 0.956
of the large number of channels in this model, we also utilize channel attention mechanisms to improve DenseNet-121 (lateral branch) - 0.948
the model’s performance. Our comparative experiments show that neural network fusion of frontal and _ _
lateral chest image features can achieve higher accuracy than the single task model. Using only image-level DenseNet-121 (fused branch) 0.974
annotation, our pneumothorax model can achieve high recognition accuracy.
INDEX TERMS Convolutional neural network, pneumothorax, chest X-ray images, computer-aided Data Limitations : Requirement of pairs of image—level annotations (frontal
dic sis, multiple input network. - . .
AR, KPR CURETRL L annotation + lateral annotation) rather than only front images.
Limitations . . . . .
Data Annotations : Paired image-level annotations over pixel-level
annotations.




Application of Deep Learning Techniques for Detection of Pneumothorax in
Chest Radiographs
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Abstract: With the advent of Artificial Intelligence (AI) and even more so recently in the field of
Machine Learning (ML), there has been rapid progress across the field. One of the prominent examples
is image recognition in the medical category, such as X-ray imaging, Computed Tomography (CT),
and Magnetic Resonance Imaging (MRI). It has the potential to alleviate a doctor’s heavy workload
of sifting through large quantities of images. Due to the rising attention to lung-related diseases, such
as pneumothorax and nodules, ML is being incorporated into the field in the hope of alleviating the
already strained medical resources. In this study, we proposed a system that can detect pneumothorax
diseases reliably. By comparing multiple models and hyperparameter configurations, we recommend
a model for hospitals, as its focus on minimizing false positives aligns with the precision required
by medical professionals. Through our cooperation with Poh-Ai Hospital, we acquired a total of
over 8000 X-ray images, with more than 1000 of them from pneumothorax patients. We hope that
by integrating Al systems into the automated process of scanning chest X-ray images with various
diseases, more resources will be available in the already strained medical systems. Our proposed
system showed that the best model that is used for transfer learning from our dataset performed
with an AP of 51.57 and an AP75 of 61.40, with accuracy at 93.89%, a false positive of 1.12%, and
a false negative of 4.99%. Based on the feedback from practicing doctors, they are more wary of
false positives. For their use case, we recommend another model due to the lower false positive
rate and higher accuracy compared with other models, which in our test shows a rate of only 0.88%
and 95.68%, demonstrating the feasibility of the research. This promising result showed that it
could be utilized in other types of diseases and expand to more hospitals and medical organizations,
potentially benefitting more people.

Keywords: artificial intelligence; machine learning; X-ray; magnetic resonance imaging; Detectron2;
lung diseases classification; image recognition

Architecture Inferences
(Developed Solution)

Model Selection : Utilized Detectron2 for pneumothorax detection. Model choices
include ResNet and ResNeXt. ResNet models employed Feature Pyramid Network
(FPN) for COCO instance segmentation. ResNeXt model used X101-FPN.

Training : Training set consists of 784 pneumothorax images. Test run with various
configurations from R101-FPN baseline. Selected configuration: 26-1501, with 100,000
iterations, learning rate of 0.001, weight decay of 0.0001, batch size of 512. Decay steps
at 25k, 40k, 50k, 60k, 70k, 80k, 85k, and 95k iterations.

Augmentations : Various augmentations applied during training, including random
brightness, contrast, rotation, and saturation adjustments to reduce overfitting.

Evaluation Metrics

False Positive (%), False Negative (%), Accuracy (%), AP (%), AP50 (%), AP75 (%)

Performance Scores (AUC)

ResNet50 (COCO)

False Positive (%) - 1.33
False Negative (%) - 4.38
Accuracy (%) - 94.29

ResNeXt101 (COCO)
False Positive (%) - 0.88
False Negative (%) - 3.44
Accuracy (%) - 95.68

Limitations

Limited Dataset : The dataset used in the study was collected from a local hospital,
which may not represent diverse populations or imaging protocols.

Limited Clinical Validation: While the model shows promising results, there's a lack of
comprehensive clinical validation in real-world settings. Further validation studies
involving radiologists and healthcare professionals are necessary to assess the model's
performance and reliability in clinical practice




Deep Learning Systems for Pneumothorax Detection on Chest Radiographs:
A Multicenter External Validation Study

« The research proposes usage of convolutional neural networks
Dean Leamina Svstess for Prisumothorax Detaclion on (CNNs) and recurrent neural networks (RNNs) used for feature
ch pl' Radi g )I,'I A Muls ter Ext Validation Stud Architecture extraction and capturing spatial dependencies in segmentation tasks.
est Radiograpns. ulicenier txiernal valiaaiion otudy Inf Attention Mechanisms were incorporated to focus on relevant
nierences . . - .
Yee Liang Thian, MBBS, FRCR* » Dianwen Ng MS, BSc Hons* » James Thomas Patrick Decourcy Hallinan, MBBS, (Developed regions during segmentation, enhancing accuracy.
FRCR * Pooja Jagmohan, MBBS, FRCR, MD '+ Soon Yiew Sia, MBBS, FRCR * Cher Heng Tan, MBBS, FRCR, MBA * i » Lower performance for detection of small compared with large
Yong Han Ting, MBBS, FRCR * Pin Lin Kei, MBBS, FRCR * Geoiphy George Pulickal, MBBS, FRCR * Solutlon)
Vincent Tze Yang Tiong, MBBS, FRCR * Swee Tian Quek, MBBS, FRCR * Mengling Feng, PhD pneumothoraces (AUC - 0.88 vs 0.96; P = 0.005)
From the Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074 (Y.L.T.,, D.N,, . T.ED.H,, BJ., S.¥.5.,, V.T.Y.T, 1
S T.Q.); Saw E‘i\\.‘cc Hock SchanJ of l’ubli?l lj‘lalth. School of Computer Slcjcnc:. and Yong Loo Liij'\ School u;;' I'I\-ficdjcinc. National University of Singapore, Singapore (D.N., ¢ NO mOdel performance lnﬂuence due to presence Of a CheSt tUbe
M.E); Department of Diagnostic Radiology, Alexandra Hospiral, Singapore (J.T.RD.H.); Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore (C.H.T., 0 0 R —
Y.il.']'.]:]..lcc Kong (Zhi:l.nagchoo] of Mcdicfnc. l\':m_v,mg'll‘ch}:‘:ologjc;l.;)y:[l.l?nivcrs:ry, Singnporc[l[Z.I[.'I'.J: l}cp::nrncncm' L]i.lgnnilic Radiology, N;'Ii:ng Fong (i!:'n}cml Hospital, (AUC - 0'95 [Wlth tube] VS 0'94 [Wlthout tube]) P - O°99)
Singapore (RL.K.); and Department of Diagnostic Radiology, Khoo Teck Puar Hospiral, Singapore (G.G.E). Received August 4, 2020; revision requested Ocrober 16; revision
received March 12, 2021; accepted March 30. Address correspondence to Y.L.T. (e-mail: yee_liang_thian@mubs.edu.sg).
Supported by National University Health System (NUHS) internal grant funding under the NUHS Seed Fund (NUHSRO/2018/097/R05+ 5/Seed-Nov/07 and NUH-
SRO/2018/019/RO5+ 5/NUHS) and a National Medical Research Council Health Services Research Grant (HSRG-0C17nov004). R o e o o o/ o
*Y.L.T. and D.N. contributed L'quall:\-‘ to this work. Evaluatlon Metrlcs SenSItIVIty) SpQlelClty, F]. Score, AUC) P Value
Conflicts of interest are listed at the end of this article.
See also commentary by Jacobson and Krupinski in this issue.
Radiology: Artificial Intelligence 2021; 3(4):¢200190 *  hutps://doi.org/10.1148/ryai. 2021200190 * Content codes:
EfficientNet B3
Purpese: To assess the generalizability of a deep learning pneumothorax detection model on datasets from multiple external institutions .« o o
and examine patient and acquisition factors that might influence performance. SenSlthlty (%) - 98
Materials and Methods: In this retrospective study, a deep learning model was trained for pneumothorax detection by merging two large Performance SpeCifiCity (%) -92
open-source chest radiograph datasets: ChestX-ray14 and CheXpert. It was then tested on six external datasets from multiple indepen- oy 0 o Lo
dent institutions (labeled A—F) in a retrospective case-control design (data acquired between 2016 and 2019 from institutions A-E; Scores (AUC) Positive predlCtlve Value (%) - 80
institution F consisted of data from the MIMIC-CXR dataset). Performance on each dataset was evaluated by using area under the . o L 0
receiver operating characteristic curve (AUC) analysis, sensitivity, specificity, and positive and negative predictive values, with two radi- Negatlve predlctlve Value ( A)) -99
ologists in consensus being used as the reference standard. Patient and acquisition factors that influenced performance were analyzed.
= d - d = F1 score (%) - 88
Results: The AUC:s for pneumothorax detection for external institutions A—F were 0.91 (95% CI: 0.88, 0.94), 0.97 (95% CI: 0.94,
0.99), 0.91 (95% CI: 0.85, 0.97), 0.98 (95% CI: 0.96, 1.0), 0.97 (95% CI: 0.95, 0.99), and 0.92 (95% CI: 0.90, 0.95), respectively,
compared with the internal test AUC of 0.93 (95% CI: 0.92, 0.93). The model had lower performance for small compared with large
pneumothoraces (AUC, 0.88 [95% CI: 0.85, 0.91] vs AUC, 0.96 [95% CI: 0.95, 0.97]; P = .005). Model performance was not differ-
ent when a chest tube was present or absent on the radiographs (AUC, 0.95 [95% CI: 0.92, 0.97] vs AUC, 0.94 [95% CI: 0.92, 0.05];
P>.99). Dependency on large annotated datasets: The effectiveness of the
Condusion: A deep learning model trained with a large volume of darta on the task of pneumothorax detection was able to generalize proposed arChiteCture heaVi].y I‘elieS on access to large and diverse
well to multiple external datasets with patient demographics and technical parameters independent of the training data. . . . .. . . .
Limitations datasets for training. Computational complexity: Integrating both
Supplemental material is available for this article, 1
2 4 Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
B (RNNSs) increases the computational burden.




Dataset: Source, Modality and Ethical Concerns

Source: Society for Imaging Informatics in Medicine (SIIM)
Data Provided:
 DICOM Files (encapsulate patient data and image)
e CSV File (includes Run Length Encoded mask information)
Modality of Image: X-Ray (Greyscale)
Ethical Concerns: None, as it’s a publicly available dataset
Missing Files: 42 files of Stage 1 & 2 train set don’t have annotations

1. Stage 1 and Stage 2 Training and Test Data 3. Stage 1 and Stage 2 Gender Distribution
Train Test Male Female
Stage 1 & 2 12089 3205 Stage1& 2 | 6626 (55.001) 5421 (44.998%)
2. Stage 1 and Stage 2 Pneumothorax Distribution 4. Stage 1 and Stage 2 View Position Distribution
Pneumothorax Non-Pneumothorax AP PA AP/PA

Stage 1 & 2 2669(22.15%) 9378(77.84%) Stage 1 & 2 4773 7274 | 0.6562




Dataset Statistics and Visualisation

Pneumothorax Incidence by Age and Gender




Dataset Statistics and Visualisation

Pneumothorax by Gender Distribution

Pneumothorax

Pneumothorax: 2379 (22.29%)
Non-Pneumothorax: 8296 (77.71%)

Male Pneumothorax: 1326 (55.74%)
Female Pneumothorax: 1853 (44.26%)
Male Non-Pneumothorax: 4554 (54.89%)
Female Non-Pneumothorax: 3742 (45.11%)

Mon-Pneumothorax




Dataset Statistics and Visualisation

Correlation Matrix: Age, Pneumothorax, and Sex
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Dataset Statistics and Visualisation

Age Group, Gender, and Pneumothorax

NP: 2484 . Pneumothorax
Male - Prneumothorax
EE Male - Mo Pneumothorax
Female - Pneumothorax

I Female - No Pneumothorax
NP: 2139 '

NP: 1124

NP: 132

; NP: 123
NP: 8 NP: @ : ;
P: 8 P: ©

Infancy Childhood Early Adolescence Young Adults Older Adults
(e-1) (1-11) (12-18) (19-39) (48-65) (>65)
Age Group

Elderly




Data Preprocessing

01

02

03

04

Extract X-Ray images (.png) and patient metadata from
DICOM files

Decode and generate Run Length Encoded (RLE) Masks

Merge multiple masks for the same file into a single mask

Perform augmentation techniques to reduce data
imbalance by approximating 1:1 true positive and true
negative instances

,627825 7 1010 21 1ee1 26 996 28 994 29 994 29

993 31 991 32 990

592973 1 1022 3 1020 5 1018 6 1017 7 1817 8 1015 9 1015 9 1015 9
643239 4 1017 11 1012 14 1e@8 17 10e6 19 1085

19 1004 20 1ee4 20




Data Preprocessing: Radiographs, Segmentation Masks and
Groundtruth

EXTRACTED IMAGE DECODED MERGED MASK OVERLAYED IMAGE




Data Preprocessing : Dynamic Augmentation

Pure Augmentations

1. Horizontal Flip

2. Random Brightness Contrast

3. Random Gamma

4. CLAHE (Contrast Limited Adaptive Histogram
Equalization)

5. Optical Distortion

6. Shift Scale Rotate (+ 15°)

7. Gaussian Noise

Mixed Augmentations

1. Horizontal Flip + Random Brightness Contrast +
Random Gamma/CLAHE/Optical
Distortion/Gaussian Noise

2. Shift Scale Rotate + Gaussian Noise

3. CLAHE + Gaussian Noise/Random
Gamma/Optical Distortion

4. Random Gamma + Optical Distortion

5. Random Brightness Contrast + Gaussian Noise
6. Shift Scale Rotate + Random Gamma/Horizontal
Flip/Gaussian Noise/Optical Distortion




Methodology
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Hyper Parameters

Parameter Value
Input size 512x 512x 3
Batch Size 8

L.oss Function

Combination Loss of Dice and Binary Cross Entropy

CNN Activation
. RelLU
Functions
Segmentation Head , ,
- .. . Sigmoid
Activation Function
Encoder Depth 5




Hyper Parameters

Initialization

Parameter Value

Scheduler Cosine Annealing with Warm Restarts (Iterations for Restart = 10) / Reduce
Learning Rate on Plateau (Patience = 2, Threshold = 0.01, Factor = 0.8)

Optimizer Adam

Initial Learning Rate le-4

Kernel Size 3x3

Encoder Weights
ImageNet




Hyper Parameters - Learning Rate Schedulers

Cosine Annealing
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e Expected better convergence and thereby provide better accuracy
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Learning rate

0.4

0.3

Leamning rate

0.2

0.1

Reducing the learning rate if the performance metric (Validation IoU)
does not cross the dynamic absolute threshold.

“Patience Value” waits for a certain number of epochs before reducing

the learning rate

 However, the expected number of epochs are much higher for convergence!




Dice Loss

Region Based Loss

It is a measure of the dissimilarity between
the predicted segmentation and the true
segmentation of an image.

Dice Loss is particularly useful when dealing
with imbalanced datasets, where the
positive and negative classes are not evenly
distributed. Since Dice Loss takes into
account both the predicted and true
segmentation values, it can help prevent the
model from favouring one class over the
other.

Dice =

2 X

2 X Area of overlap

Total area

Prediction

L.oss =1 - Dice




Binary Cross Entropy Loss

Distribution Based L.oss

Binary cross entropy measures the difference
between the predicted probabilities and the true
labels, penalizing incorrect predictions more
heavily as the confidence in the prediction -

LS HEE RIS H,(q) = ~N Z y; - log(p(y;)) + (1 —y;) log(l — p(y;))
|

i

This loss function is particularly useful in
scenarios where the classes are imbalanced, as it
can help the model learn to make better
predictions for the minority class.




Weighted Combo Loss

Penalise both Regions and Edges

Combo loss is defined as a weighted sum of Dice
Loss and Binary Cross-Entropy. It attempts to
leverage the flexibility of Dice Loss of class
imbalance and at the same time

use Cross-Entropy for curve smoothing.

It’s defined as:

Lintee = = 3 By —log(9) + (1= B)(1 — y)log(1 )
(17) Loss = 1 x Dice + 0.5 x BCE
CL(y,9) = 0L bec — (1— 0)DL(y,5)  (I8)

Here DL 1s Dice Loss.




Performance Metrics

: 2 X Area of overlap
Dice = ! =
Total area

2 X
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Results
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Computational Challenges

e Loading the entire UNet Model for training takes 12.67 GiB for a
batch size of 8 images for 512x512 images

e Need a CUDA compute score of over 8.6 to achieve 1.2s/it to
complete the epoch within 30 minutes

e Choose to use the ampere architecture for its power efficiency
and performance

e RTX A4000 for its batch size per dollar.

e Gradient Plan gives us a limited amount of 6 hours per GPU

Paperspace

by DigitalOcean

[ ]
lnStance Relative Largest Training Batch Size Per $ w.r.t 1xV100 32GB (All Models)

° ° ° ° ° . ° RTX A4000
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Challenges

e Images were downsized from 1024 x 1024 to 512 x 512, and
hence the new images became 1/4th of the original.

e This poses as a challenge in terms of information loss of
the delicate thin lines that mark the boundaries of a
collapsed lung.

e Predicted masks were then upscaled from 512 x 512 to 1024
x 1024, thereby adding some form of new information.

e Higher dice coefficient score could have been achieved if
original images were used.




Deployment
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Future Scope

e Apply a Vision Transformer approach for better ————— ] 1
Global Feature Extraction with access to better i el i el
compute v v e Bl s oy e [l e o

o Increase data samples through integration with ~ \lel=le | [ ] [-]°
CheXpert Dataset

e Larger Batch Size e

e Semi-Supervision Model P

e Voting Classifiers (Ensemble Models) % % % %

e Cumulative Thresholding (2 or 3) I e

Abedalla, A., Abdullah, M., Al-Ayyoub, M., & Benkhelifa, E. (2021). Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures. Peer]. Computer

science, 7, e607. https://doi.org/10.7717/peerj-cs.607
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